Publications and drafts by topic: Gene
Ehud Lamm, Hopeful heretic–Richard Goldschmidt’s genetic metaphors. In Hist Philos Life Sci. 2008;30(3-4):387-405, 2008 [Page|PDF ]
Richard Goldschmidt famously rejected the notion of atomic and corpuscular genes, arranged on the chromosome like beads-on-a-string. I provide an exegesis of Goldschmidt’s intuition by analyzing his repeated and extensive use of metaphorical language and analogies in his attempts to convey his notion of the nature of the genetic material and specifically the significance of chromosomal pattern. The paper concentrates on Goldschmidt’s use of metaphors in publications spanning 1940-1955.
Ehud Lamm, The Metastable Genome: A Lamarckian Organ in a Darwinian World?. In Eva Jablonka & Snait Gissis (eds.), Transformations of Lamarckism: from subtle fluids to molecular biology, 2011 [Page|PDF ]
Ehud Lamm, The genome as a developmental organ. In Journal of Physiology 592 (11):2237-2244 (2014), 2014 [Page]
This paper applies the conceptual toolkit of Evolutionary Developmental Biology (evo‐devo) to the evolution of the genome and the role of the genome in organism development. This challenges both the Modern Evolutionary Synthesis, the dominant view in evolutionary theory for much of the 20th century, and the typically unreflective analysis of heredity by evo‐devo. First, the history of the marginalization of applying system‐thinking to the genome is described. Next, the suggested framework is presented. Finally, its application to the evolution of genome modularity, the evolution of induced mutations, the junk DNA versus ENCODE debate, the role of drift in genome evolution, and the relationship between genome dynamics and symbiosis with microorganisms are briefly discussed.
Oren Harman and Ehud Lamm, History of Classical Genetics. In eLS: Encyclopedia of Life Sciences, 2015 [Page]
Ehud Lamm, Systems Thinking Versus Population Thinking: Genotype Integration and Chromosomal Organization 1930s–1950s. In Journal of the History of Biology, 2015 [Page]
This article describes how empirical discoveries in the 1930s–1950s regarding population variation for chromosomal inversions affected Theodosius Dobzhansky and Richard Goldschmidt. A significant fraction of the empirical work I discuss was done by Dobzhansky and his coworkers; Goldschmidt was an astute interpreter, with strong and unusual commitments. I argue that both belong to a mechanistic tradition in genetics, concerned with the effects of chromosomal organization and systems on the inheritance patterns of species. Their different trajectories illustrate how scientists’ commitments affect how they interpret new evidence and adjust to it. Dobzhansky was moved to revised views about selection, while Goldschmidt moved his attention to different genetic phenomena. However different, there are significant connections between the two that enrich our understanding of their views. I focus on two: the role of developmental considerations in Dobzhansky’s thought and the role of neutrality and drift in Goldschmidt’s evolutionary account. Dobzhansky’s struggle with chromosomal variation is not solely about competing schools of thought within the selectionist camp, as insightfully articulated by John Beatty, but also a story of competition between selectionist thinking and developmental perspectives. In contraposition, Goldschmidt emphasized the role of low penetrance mutations that spread neutrally and pointed out that drift could result from developmental canalization. This account adds to the dominant story about Goldschmidt’s resistance to the splitting of development from genetics, as told by Garland Allen and Michael Dietrich. The story I tell illustrates how developmental thinking and genetic thinking conflicted and influenced researchers with different convictions about the significance of chromosomal organization.
Ehud Lamm and Sophie Juliane Veigl, Back to Chromatin: ENCODE and the Dynamic Epigenome. In Biological Theory, 2022 [Page]
The “Encyclopedia of DNA Elements” (ENCODE) project was launched by the US National Human Genome Research Institute in the aftermath of the Human Genome Project (HGP). It aimed to systematically map the human transcriptome, and held the promise that identifying potential regulatory regions and transcription factor binding sites would help address some of the perplexing results of the HGP. Its initial results published in 2012 produced a flurry of high-impact publications as well as criticisms. Here we put the results of ENCODE and the work on epigenomics that followed in a broad theoretical and historical context, focusing on three strands of research. The first is the history of thinking about the organization of genomes, both physical and regulatory. The second is the history of ideas about gene regulation, primarily in eukaryotes. Finally, and connecting these two issues, we suggest how to think about the role of genetic material in physiology and development.
Unpublished drafts and work in progress
Ehud Lamm, Chromsomal inversions, hybdrid vigor, and Goldschmidt’s Models of Chromsomal Genic Action. [Page]
Ehud Lamm, What passes for population thinking? Reflections on Peter Godfrey-Smith’s Darwinian Populations and Natural Selection.
Ehud Lamm, Genetics and Epigenetics Meet in the Genome. [Page]