Ehud Lamm

Publications and drafts by topic: Genome

Ehud Lamm & Eva Jablonka, The Nurture of Nature: Hereditary Plasticity in Evolution. In Philosophical Psychology 21 (3):305–319, 2008 [Page]

The dichotomy between Nature and Nurture, which has been dismantled within the framework of development, remains embodied in the notions of plasticity and evolvability. We argue that plasticity and evolvability, like development and heredity, are neither dichotomous nor distinct: the very same mechanisms may be involved in both, and the research perspective chosen depends to a large extent on the type of problem being explored and the kinds of questions being asked. Epigenetic inheritance leads to transgenerationally extended plasticity, and developmentally-induced heritable epigenetic variations provide additional foci for selection that can lead to evolutionary change. Moreover, hereditary innovations may result from developmentally induced large-scale genomic repatterning events, which are akin to Goldschmidtian “systemic mutations”. The epigenetic mechanisms involved in repatterning can be activated by both environmental and genomic stress, and lead to phylogenetic as well as ontogenetic changes. Hence, the effects and the mechanisms of plasticity directly contribute to evolvability.


Ehud Lamm, The Metastable Genome: A Lamarckian Organ in a Darwinian World?. In Eva Jablonka & Snait Gissis (eds.), Transformations of Lamarckism: from subtle fluids to molecular biology, 2011 [Page|PDF ]


Ehud Lamm, Epigenetic Mechanisms Underlie Genome Development (Commentary on: Lux 2013). In International Journal of Developmental Science, 2013 [Page|PDF ]


Ehud Lamm, The genome as a developmental organ. In Journal of Physiology 592 (11):2237-2244 (2014), 2014 [Page]

This paper applies the conceptual toolkit of Evolutionary Developmental Biology (evo‐devo) to the evolution of the genome and the role of the genome in organism development. This challenges both
the Modern Evolutionary Synthesis, the dominant view in evolutionary theory for much of the 20th century, and the typically unreflective analysis of heredity by evo‐devo. First, the history of the marginalization of applying system‐thinking to the genome is described. Next, the suggested framework is presented. Finally, its application to the evolution of genome modularity, the evolution of induced mutations, the junk DNA versus ENCODE debate, the role of drift in genome evolution, and the relationship between genome dynamics and symbiosis with microorganisms are briefly discussed.


Ehud Lamm, Systems Thinking Versus Population Thinking: Genotype Integration and Chromosomal Organization 1930s–1950s. In Journal of the History of Biology, 2015 [Page]

This article describes how empirical discoveries in the 1930s–1950s regarding population variation for chromosomal inversions affected Theodosius Dobzhansky and Richard Goldschmidt. A significant fraction of the empirical work I discuss was done by Dobzhansky and his coworkers; Goldschmidt was an astute interpreter, with strong and unusual commitments. I argue that both belong to a mechanistic tradition in genetics, concerned with the effects of chromosomal organization and systems on the inheritance patterns of species. Their different trajectories illustrate how scientists’ commitments affect how they interpret new evidence and adjust to it. Dobzhansky was moved to revised views about selection, while Goldschmidt moved his attention to different genetic phenomena. However different, there are significant connections between the two that enrich our understanding of their views. I focus on two: the role of developmental considerations in Dobzhansky’s thought and the role of neutrality and drift in Goldschmidt’s evolutionary account. Dobzhansky’s struggle with chromosomal variation is not solely about competing schools of thought within the selectionist camp, as insightfully articulated by John Beatty, but also a story of competition between selectionist thinking and developmental perspectives. In contraposition, Goldschmidt emphasized the role of low penetrance mutations that spread neutrally and pointed out that drift could result from developmental canalization. This account adds to the dominant story about Goldschmidt’s resistance to the splitting of development from genetics, as told by Garland Allen and Michael Dietrich. The story I tell illustrates how developmental thinking and genetic thinking conflicted and influenced researchers with different convictions about the significance of chromosomal organization.


Ehud Lamm and Eva Jablonka, Lamarck’s Two Legacies: A 21st-century Perspective on Use-Disuse and the Inheritance of Acquired Characters. In Interdisciplina. vol 3 (5): January-April 2015, 2015 [Page|PDF ]

Lamarck has left many legacies for future generations of biologists. His best known legacy was an explicit suggestion, developed in the Philosophie zoologique (PZ), that the effects of use and disuse (acquired characters) can be inherited and can drive species transformation. This suggestion was formulated as two laws, which we refer to as the law of biological plasticity and the law of phenotypic continuity. We put these laws in their historical context and distinguish between Lamarck’s key insights and later neo-Lamarckian interpretations of his ideas. We argue that Lamarck’s emphasis on the role played by the organization of living beings and his physiological model of reproduction are directly relevant to 21st-century concerns, and illustrate this by discussing intergenerational genomic continuity and cultural evolution.


Unpublished drafts and work in progress

Ehud Lamm, What passes for population thinking? Reflections on Peter Godfrey-Smith’s Darwinian Populations and Natural Selection.


Ehud Lamm, Genetics and Epigenetics Meet in the Genome. [Page]


  • Home
  • Research
  • By topic »
    • Chromosome
    • Co-Evolution
    • Cultural Evolution
    • Development
    • ENCODE
    • Epigenetics
    • Epigenetic Inheritance
    • Evo-Devo
    • Evolution of Language
    • Evolvability
    • Gene
    • Genome
    • History
    • Holobionts
    • Individuality
    • Inheritance Systems
    • Mechanisms
    • Metaphors
    • Modeling
    • Normativity
    • Book Reviews
  • Books »
    • Landscapes of Collectivity in the Life Sciences
    • Biological Computation
    • The Living Genome
  • Talks
  • Teaching
  • Odyssey '15
  • Odyssey Question
  • Reading Groups
  • Lab »
    • Conceptual Biology Lab
    • Lab People
  • Stuff
  • News
     

Hand coded site. Powered by yst. Generated on 2017-07-31.