Publications and drafts by topic: Modeling
Ehud Lamm, Hopeful heretic–Richard Goldschmidt’s genetic metaphors. In Hist Philos Life Sci. 2008;30(3-4):387-405, 2008 [Page|PDF ]
Richard Goldschmidt famously rejected the notion of atomic and corpuscular genes, arranged on the chromosome like beads-on-a-string. I provide an exegesis of Goldschmidt’s intuition by analyzing his repeated and extensive use of metaphorical language and analogies in his attempts to convey his notion of the nature of the genetic material and specifically the significance of chromosomal pattern. The paper concentrates on Goldschmidt’s use of metaphors in publications spanning 1940-1955.
Ehud Lamm, Conceptual and methodological biases in network models. In Annals of the New York Academy of Sciences 2009;1178(1 Natural Genetic Engineering and Natural Genome Editing):291-304, 2009 [Page|PDF ]
Many natural and biological phenomena can be depicted as networks. Theoretical and empirical analyses of networks have become prevalent. I discuss theoretical biases involved in the delineation of biological networks. The network perspective is shown to dissolve the distinction between regulatory architecture and regulatory state, consistent with the theoretical impossibility of distinguishing a priori between “program” and “data.” The evolutionary significance of the dynamics of trans-generational and interorganism regulatory networks is explored and implications are presented for understanding the evolution of the biological categories development-heredity, plasticity-evolvability, and epigenetic-genetic.
Eva Jablonka & Ehud Lamm, The Epigenotype: a dynamic network-view of development. In International Journal of Epidemiology, 2011 [Page|PDF ]
Ehud Lamm, Theoreticians as Professional Outsiders: The Modeling Strategies of John von Neumann and Norbert Wiener. In Oren Harman and Michael R. Dietrich (eds.), Outsider Scientists: Routes to Innovation in Biology. Chicago University Press., 2013 [Page|PDF ]
Both von Neumann and Wiener were outsiders to biology. Both were inspired by biology and both proposed models and generalizations that proved inspirational for biologists. Around the same time in the 1940s von Neumann developed the notion of self reproducing automata and Wiener suggested an explication of teleology using the notion of negative feedback. These efforts were similar in spirit. Both von Neumann and Wiener used mathematical ideas to attack foundational issues in biology, and the concepts they articulated had lasting effect. But there were significant differences as well. Von Neumann presented a how-possibly model, which sparked interest by mathematicians and computer scientists, while Wiener collaborated more directly with biologists, and his proposal influenced the philosophy of biology. The two cases illustrate different strategies by which mathematicians, the “professional outsiders” of science, can choose to guide their engagement with biological questions and with the biological community, and illustrate different kinds of generalizations that mathematization can contribute to biology. The different strategies employed by von Neumann and Wiener and the types of models they constructed may have affected the fate of von Neumann’s and Wiener’s ideas – as well as the reputation, in biology, of von Neumann and Wiener themselves.
Ehud Lamm, Epigenetic Mechanisms Underlie Genome Development (Commentary on: Lux 2013). In International Journal of Developmental Science, 2013 [Page|PDF ]
Ehud Lamm, Systems Thinking Versus Population Thinking: Genotype Integration and Chromosomal Organization 1930s–1950s. In Journal of the History of Biology, 2015 [Page]
This article describes how empirical discoveries in the 1930s–1950s regarding population variation for chromosomal inversions affected Theodosius Dobzhansky and Richard Goldschmidt. A significant fraction of the empirical work I discuss was done by Dobzhansky and his coworkers; Goldschmidt was an astute interpreter, with strong and unusual commitments. I argue that both belong to a mechanistic tradition in genetics, concerned with the effects of chromosomal organization and systems on the inheritance patterns of species. Their different trajectories illustrate how scientists’ commitments affect how they interpret new evidence and adjust to it. Dobzhansky was moved to revised views about selection, while Goldschmidt moved his attention to different genetic phenomena. However different, there are significant connections between the two that enrich our understanding of their views. I focus on two: the role of developmental considerations in Dobzhansky’s thought and the role of neutrality and drift in Goldschmidt’s evolutionary account. Dobzhansky’s struggle with chromosomal variation is not solely about competing schools of thought within the selectionist camp, as insightfully articulated by John Beatty, but also a story of competition between selectionist thinking and developmental perspectives. In contraposition, Goldschmidt emphasized the role of low penetrance mutations that spread neutrally and pointed out that drift could result from developmental canalization. This account adds to the dominant story about Goldschmidt’s resistance to the splitting of development from genetics, as told by Garland Allen and Michael Dietrich. The story I tell illustrates how developmental thinking and genetic thinking conflicted and influenced researchers with different convictions about the significance of chromosomal organization.
Ehud Lamm, Cultural group selection and holobiont evolution – a comparison of structures of evolution. In Snait Gissis, Ehud Lamm, and Ayelet Shavit (eds.), Landscapes of Collectivity in the Life Sciences. MIT Press., 2017 [Page|PDF ]
The notion of structure of evolution is proposed to capture what it means to say that two situations exhibit the same or similar constellations of factors affecting evolution. The key features of holobiont evolution and the hologenome theory are used to define a holobiont structure of evolution. Finally, Cultural Group Selection, a set of hypotheses regarding the evolution of human cognition, is shown to match the holobiont structure closely though not perfectly.
Ehud Lamm, The Paradox of the Paradox of Voting. 2021 [Page]
Michael R. Dietrich, Oren Harman, Ehud Lamm, Richard Lewontin and the ‘complications of linkage’. In Studies in History and Philosophy of Science Part A 88: 237–244, 2021 [Page]
During the 1960s and 1970s population geneticists pushed beyond models of single genes to grapple with the effect on evolution of multiple genes associated by linkage. The resulting models of multiple interacting loci suggested that blocks of genes, maybe even entire chromosomes or the genome itself, should be treated as a unit. In this context, Richard Lewontin wrote his famous 1974 book The Genetic Basis of Evolutionary Change, which concludes with an argument for considering the entire genome as the unit of selection as a result of linkage. Why did Lewontin and others devote so much intellectual energy to the “complications of linkage” in the 1960s and 1970s? We argue that this attention to linkage should be understood in the context of research on chromosomal inversions and co-adapted gene complexes that occupied mid-century evolutionary genetics. For Lewontin, the complications of linkage were an extension of this chromosomal focus expressed in the new language of models for linkage disequilibrium.
Adam Krashniak and Ehud Lamm, Francis Galton’s regression towards mediocrity and the stability of types. In Studies in History and Philosophy of Science Part A 86: 6–19, 2021 [Page]
A prevalent narrative locates the discovery of the statistical phenomenon of regression to the mean in the work of Francis Galton. It is claimed that after 1885, Galton came to explain the fact that offspring deviated less from the mean value of the population than their parents did as a population-level statistical phenomenon and not as the result of the processes of inheritance. Arguing against this claim, we show that Galton did not explain regression towards mediocrity statistically, and did not give up on his ideas regarding an inheritance process that caused offspring to revert to the mean. While the common narrative focuses almost exclusively on Galton’s statistics, our arguments emphasize the anthropological and biological questions that Galton addressed. Galton used regression towards mediocrity to support the claim that some biological types were more stable than others and hence were resistant to evolutionary change. This view had implications concerning both natural selection and eugenics. The statistical explanation attributed to Galton appeared later, during the biometrician-mutationist debate in the early 1900s. It was in the context of this debate and specifically by the biometricians, that the development of the statistical explanation was originally attributed to Galton.
Ehud Lamm, The rise of mathematics in biology was not a matter of luck. In Metascience, 2023 [Page]
Unpublished drafts and work in progress
Ehud Lamm, Chromsomal inversions, hybdrid vigor, and Goldschmidt’s Models of Chromsomal Genic Action. [Page]
Ehud Lamm, What passes for population thinking? Reflections on Peter Godfrey-Smith’s Darwinian Populations and Natural Selection.